

UNIVERSAL CERTIFICATION and SURVEILLANCE SERVICES TRADE CO.

Necip Fazil Bulvari Keyap Sitesi E2 Blok No:44/84 Yukari Dudullu Umraniye, Istanbul / TURKEY

TEST REPORT

Report Date: 23.05.2020

Report Number: 05-2020-T-090

CLIENT and SAMPLE INFORMATION

TEST OWNER	BAŞARAN İş Elbiseleri İş Güvenliği Ekipmanları Sanayi Ve Ticaret Limited Şirketi						
ADDRESS	Demokrasi	Demokrasi Caddesi Serüven Sokak No:3 34956 Orhanlı Tuzla / İSTANBUL					
SAMPLE DESCRIPTION	V shaped,	folding type pro	tectiv	ve mask (See end of te	st report for sample photo)		
BRAND NAME - MODEL	ERA 4310						
TESTING STANDARD	EN 149+A	EN 149+A1:2009					
CASE NUMBER	CE-PPE-1966						
SAMPLE RECEIVE DATE	12.04.2020 TESTING START DATE 16.04.2020				16.04.2020		
DISINFECTION INSTRUCTION If applicable	Not given,	single use only					
NUMBER OF SAMPLES	50	SAMPLE	IDs:	1 – 46			
AS RECEIVED SAMPLE NO	26-46						
	Simulated wearing treatment		1-2-3-4-5-6-7-8-9 (As Received)				
CONDITIONING SAMPLE NO	Temperature conditioning		10-11-12-13-14-15 (Sample after test of Mechanica Strength)				
			16-	17-18-19-20-21-22-23	3-24-25 (As Received)		
	Mechanical	strength	10-11-12-13-14-15 (As Received)				

The results given in this test report belongs to the samples tested. The report content cannot be recreated partially without the written consent of UNIVERSAL CERTIFICATION.

Suat KAÇMAZ Director

Page 1 / 12

1. REPORT SUMMARY

TEST STANDARD	TEST NAME	RESULT	EVALUATION
EN 149:2001 + A1:2009 clause 8.5 EN 13274-1:2001	Total Inward Leakage Testing	Pass	FFP3
EN 149:2001 + A1:2009 clause 8.11 EN 13274-7:2019	Penetration of Filter Material	Pass	FFP3
EN 149:2001 + A1:2009 clause 8.6 EN 13274-4:2001	Flammability Testing	Pass	See result
EN 149:2001 + A1:2009 clause 8.7 EN 13274-6:2001	Carbon Dioxide Content of The Inhalation Air Testing	Pass	See result
EN 149:2001 + A1:2009 clause 8.9	Breathing Inhalation Resistance-30 l/min	Pass	See results
EN 13274-3:2001	Breathing Inhalation Resistance-95 l/min	Pass	See results
EN 149:2001 + A1:2009 clause 8.9 EN 13274-3:2001	Exhalation Resistance, flow rate 160 l/min	Pass	See result

2. TEST RESULTS and EVALUATION

7.4 PACKAGING (EN 149:2001 + A1:2009 clause 8.2)

Test Method: Clause 8.2-Visual inspection

REQUIREMENT	RESULTS	COMMENT
Particle filtering half masks shall be offered for sale packaged in such a way that they are protected against mechanical damage and contamination before use.	Pass	The masks were packaged in sealed plastic bags, in larger plastic bags inside a large cardboard box that gave some protection against mechanical damage or contamination before use

Lab A

7.5 MATERIAL (EN 149:2001 + A1:2009 clause 8.2, 8.3.1, 8.3.2)

Test Method: Clause 8.2-Visual inspection

Clause 8.3.1-Simulated wearing treatment

A breathing machine is adjusted to 25 cycles/min and 2,0 l/stroke. The particle filtering half mask was mounted on a Sheffield dummy head.

For testing, a saturator is incorporated in the exhalation line between the breathing machine and the dummy head, the saturator being set at a temperature in excess of 37 °C to allow for the cooling of the air before it reaches the mouth of the dummy head.

The air has been saturated at (37 ± 2) °C at the mouth of the dummy head

Clause 8.3.2-Temperature conditioning

The ambient temperature for testing has been between 16 °C and 32 °C and the temperature limits has been subject to an accuracy of ± 1 °C.

a) for 24 h to a dry atmosphere of (70 ± 3) °C;

b) for 24 h to a temperature of (-30 ± 3) °C; and allow to return to room temperature for at least 4 h between exposures and prior to subsequent testing. The conditioning has been carried out in a manner which ensures that no thermal shock occurs.

REQUIREMENT	RESULTS	COMMENT
Materials used shall be suitable to withstand handling and wear over the period for which the particle filtering half mask is designed to be used.	Pass	The materials used were able to withstand handling and wear during the limited laboratory testing carried out.
Any material from the filter media released by the air flow through the filter shall not constitute a hazard or nuisance for the wearer.	Pass	It was not constitute a hazard or nuisance for the wearer.
After undergoing the conditioning described in 8.3.1 none of the particle filtering half masks shall have suffered mechanical failure of the facepiece or straps.	Pass	None of the specimens conditioned suffered mechanical failure.
When conditioned in accordance with 8.3.1 and 8.3.2 the particle filtering half mask shall not collapse.	Pass	None of the specimens had not collapse after conditioning.

7.6 CLEANING AND DISINFECTING (EN 149:2001 + A1:2009 clause 8.4, 8.5, 8.11)

Test Method: Described in Clause 8.4, 8.5 and 8.11

REQUIREMENT	RESULTS	COMMENT
If the particle filtering half mask is designed to be re- usable, the materials used shall withstand the cleaning and disinfecting agents and procedures to be specified by the manufacturer. With reference to 7.9.2, after cleaning and disinfecting the re-usable particle filtering half mask shall satisfy the penetration requirement of the relevant class.	N/A	This article is not applicable for tested protective mask which is single use disposable mask.

7.7 PRACTICAL PERFORMANCE (EN 149:2001 + A1:2009 clause 8.4)

Test Method: Described in Clause 8.4

REQUIREMENT	RESULTS	COMMENT
The particle filtering half mask shall undergo practical performance tests under realistic conditions. These general tests serve the purpose of checking the equipment for imperfections that can not be determined by the tests described elsewhere in this standard.	No imperfections	

Annex I-Test Result:

Number of sample: 29 (A.R), 30 (A.R)

Assessed elements	Positive Assessment	Negative Assessment	Requirements in accordance with EN 149:2001+A1:2009	Assessment of Test Result Conformity / Nonconformity
The face piece fitting Head harness comfort Security of fastenings Speech clearness Field of vision Materials compatibility with skin	2 2 2 2 2 2 2	0 0 0 0 0	Filtering half masks should not have imperfections related to wearer's acceptance	Filtering half masks fulfil requirements of the standard EN 149:2001 + A1:2009 given in 7.1

7.8 FINISH OF PARTS (EN 149:2001 + A1:2009 clause 8.2)

Test Method: Described in Clause 8.2

REQUIREMENT	RESULTS	COMMENT
Parts of the device likely to come into contact with the wearer shall have no sharp edges or burrs.	Pass	None of the specimens used in laboratory testing showed evidence of sharp edges or burrs.

Lab A

7.9.1 TOTAL INWARD LEAKAGE (EN 149:2001 + A1:2009 clause 8.5)

Test Method: Described in Clause 8.5

REQUIREMENT	RESULTS	COMMENT	
The total inward leakage consists of three components: face seal leakage, exhalation value leakage (if exhalation value fitted) and filter penetration. For particle filtering half masks fitted in accordance with the manufacturer's information, at least 46 out of the 50 individual results shall be not greater than: 25 % for FFP1, 11 % for FFP2, 5 % for FFP3 and in addition at least 8 out of the 10 individual wearer arithmetic means for the total inward leakage shall not be greater than: 22 % for FFP1, 8 % for FFP2 2 % for FFP3	Pass	Classified as FFP3 Detail refer to Annex II	

Annex II-Test Result:

The test results obtained are given in the tables as follows

Test Subject	No of sample	Cond.	1. Walk (%)	Head side/ side (%)	Head up/down (%)	Talk (%)	2. Walk (%)	Mean (%)
1	31	A.R.	1,58	1.66	1,71	2.0	1,92	1.77
2	32	A.R.	1,93	1,72	1,68	2,11	1,48	1,78
3	33	A.R.	1,90	1,78	1,69	2,12	2,11	1,92
4	34	A.R.	1,73	1,60	1,79	1,97	2,14	1,85
5	35	A.R.	1,22	1,58	1,92	1,98	2,08	1.76
6	16	T.C.	1,82	1,58	1,44	2,12	2,09	1,81
7	17	T.C.	1,84	1,44	1,51	2,04	2,11	1,79
8	18	T.C.	1,34	1,59	1,74	2,07	2,09	1,77
9	19	T.C.	1,94	1,88	2,0	1,96	2,14	1,98
10	20	T.C.	1,43	1,91	1,88	1,99	1,98	1,84

At least 46 of 50 individual exercise results were not greater than 5 % At least 8 of 10 individual wearer arithmetic means were not greater than 2 %

Pass (FFP3)

7.9.2 PENETRATION OF FILTER MATERIAL (EN 149:2001 + A1:2009 clause 8.11)

Test Method: Described in Clause 8.11

REQUIREMENT		RESULTS	COMMENT		
Classification Max penetration of test aerosol					
	NaCl test 95 l/min %max	Paraffin oil test 95 l/min %max	Pass	Detail refer to Annex IIIA and IIIB	
FFP1	20	20	J. J. J. J. J. J. J. J. J. J. J. J. J. J	Detail refer to Affilex IIIA and IIIB	
FFP2	6	6			
FFP3	1	1			

Annex IIIA-Test Result:

The test results obtained are given in the tables as follows:

No. of Sample	Condition	Penetration of Sodium Chloride in accordance with EN 13274-7:2019 [%] Flow rate 95 l/min	Requirements in accordance with EN 149:2001+A1:2009	Assessment of Test Result Conformity / Nonconformity
36		0,24		Passed
37	As received	0,35		- doctor
38		0,44	EEDI - 20 0	Filtering half masks fulfil
1	Cimulated maning	0.79	FFP1 ≤ 20 %	the requirements of the
2	Simulated wearing treatment	0,85	FFP2 ≤ 6 %	standard EN
3	treatment	0,71	FFF2 ≤ 0 % ₀	149:2001+A1:2009 giver
10	Mechanical strength +	0,91	FFP3 < 1 %	in 7.9.2 in range of the
11	Temperature	0,59	1113 2170	first, second and third
12	conditioned	0,88		protection class (FFP1, FFP2, FFP3)

Annex IIIB-Test Result:

The test results obtained are given in the tables as follows:

No. of Sample	Condition	Penetration of Paraffin Oil Mist in accordance with EN 13274-7:2019 [%] Flow rate 95 l/min	Requirements in accordance with EN 149:2001+A1:2009	Assessment of Test Resul Conformity / Nonconformity		
39		0,37		Passed		
40	As received	0,41				
41		0,44	EED1 < 20.0	Filtering half masks fulf		
4	Simulated wearing	0,44 0,80 FFP1 ≤ 20 %		the requirements of the		
5	treatment	0,79	FFP2 ≤ 6 %	standard EN		
6	treatment	0,81	FFF2 ≥ 0 %	149:2001+A1:2009 given		
13	Mechanical strength +	0,74	FFP3 ≤ 1 %	in 7.9.2 in range of the		
14	Temperature	0,88	1113 21 70	first, second and third		
15	conditioned	0.76		protection class (FFP1, FFP2, FFP3)		

Lab A + B

7.10 COMPATIBILITY WITH SKIN (EN 149:2001 + A1:2009 clause 8.4, 8.5)

Test Method: Described in Clause 8.4 and 8.5.

REQUIREMENT	RESULTS	COMMENT
Materials that may come into contact with the wearer's skin shall not be known to be likely to cause irritation or any other adverse effect to health.	Pass	No irritation or any other adverse effect to health or sensitivity reported by the subjects.

Lab B

7.11 FLAMMABILITY (EN 149:2001 + A1:2009 clause 8.6)

Test Method: Described in Clause 8.6

REQUIREMENT	RESULTS	COMMENT
The material used shall not present a danger for the wearer and shall not be of highly flammable nature. When tested, the particle filtering half mask shall not burn or not to continue to burn 5s after removal from the flame.	Pass	Detail refer to Annex IV

Annex IV-Test Result:

The test results obtained are given in the tables as follows:

No. of Sample	Condition	Visual inspection	Requirements in accordance with EN 149:2001+A1:2009	Assessment of Test Result Conformity / Nonconformity		
45	As received	1,1		Passed		
46	Asteceived	1.5 Filtering half mask				
21		2,0	shall not burn or not continue to burn for	Filtering half masks		
Temperature conditioned		1,3	more than 5 s after removal from the flame	fulfil requirements of the standard EN 149:2001 + A1:2009 given in 7.11		

Lab B

ag

Page 7 / 12

7.12 CARBON DIOXIDE CONTENT OF THE INHALATION AIR (EN 149:2001 + A1:2009 clause 8.7)

Test Method: Described in Clause 8.7

REQUIREMENT	RESULTS	COMMENT
The carbon dioxide content of the inhalation air (dead space) shall not exceed an average of 1,0 % (by volume)	Pass	Detail refer to Annex V

Annex V-Test Result:

The test results obtained are given in the tables as follows:

No. of Sample	Condition	CO ₂ content of the inhalation air [%] by volume	An average CO ₂ content of the inhalation air [%] by volume	Requirements in accordance with EN 149:2001+A1:2009	Assessment of Test Result Conformity / Nonconformity
26	As received	0,33		CO ₂ content of the	Passed
27		0,41	0,34	inhalation air shall	Filtering half masks fulfil
28		0,27		not exceed an average of 1,0% by volume	requirements of the standard EN 149:2001 + A1:2009 given in 7.12

Lab B

7.13 HEAD HARNESS (EN 149:2001 + A1:2009 clause 8.4, 8.5)

Test Method: Described in Clause 8.4, 8.5

REQUIREMENT	RESULTS	COMMENT
The head harness shall be designed so that the particle filtering half-mask can be donned and removed easily.	Pass	No problem with the head harness reported by the wearers during the practical performance test.
The head harness shall be adjustable or self-adjusting and shall be sufficiently robust to hold the particle filtering half mask firmly in position and capable of maintaining total inward leakage requirements for the device.	Pass	No problem with the head harness reported by the wearers during the practical performance test.

7.14 FIELD OF VISION (EN 149:2001 + A1:2009 clause 8.4)

Test Method: Described in Clause 8.4

REQUIREMENT	RESULTS	COMMENT
The field of vision is acceptable if determined so in practical performance tests.	Pass	There were no adverse comments following practical performance tests.

Lab B

7.15 EXHALATION VALVE (EN 149:2001 + A1:2009 clause 8.2, 8.3.4, 8.8, 8.9.1)

Test Method: Clause 8.2, 8.3.4, 8.8, 8.9.1

REQUIREMENT	RESULTS	COMMENT
A particle filtering half mask may have one or more exhalation valve(s), which shall function correctly in all orientations.	Pass	The valve on the mask was functioning tested during the visual inspection. Total 12 valved sample (3 as received, 3 after temperature conditioning and 3 after the test for simulated wearing and 3 after the flow conditioning) tested and the results are valid for FFP3 protection class. See results on 7.16
If an exhalation valve is provided it shall be protected against or be resistant to dirt and mechanical damage and may be shrouded or may include any other device that may be necessary for the particle filtering half mask to comply with 7.9	Pass	The samples tested in accordance to 7.9 were functional those subjected to temperature, mechanical and flow conditioned processes.
Exhalation valve(s), if fitted, shall continue to operate correctly after a continuous exhalation flow of 300 l/min over a period of 30s.	Pass	No problem with the functionality of the valves noted while subjected to 300 L/min flow for 30 seconds.
When the exhalation valve housing is attached to the face blank, it shall withstand axially a tensile force of 10N applied for 10s.	Pass	The valve tested withstand to a 10 N force applied to the valve horizontally.

Lab A

7.16 BREATHING RESISTANCE (EN 149:2001 + A1:2009 clause 8.9)

Test Method: Described in Clause 8.9

	REQU	IREMENT		RESULTS	COMMENT
Classification		mitted resistance	the same of the sa		Classified as FFP3
	Inha	lation	Exhalation		
	30 l/min	95 l/min	160 1/min	Pass	Datail refer to Annew VIIA VIII
FFP1	0.6	2.1	3.0	3.300	Detail refer to Annex VIA-VIB
FFP2	0.7	2.4	3.0		
FFP3	1.0	3.0	3.0		

Annex VIA-Test Result:

The test results obtained are given in the tables as follows; Inhalation Resistance

No. of	Condition		Inh	alation Resistar	nce (mbar)	
Sample		Flow rate 30 l/min	Requirements in accordance with EN 149:2001+A1:2009	Flow rate 95 l/min	Requirements in accordance with EN 149:2001+A1:2009	Assessment of Test Result Conformity / Nonconformity
42		0,5		2,0		
43	As received	eceived 0,5		1,9		
44		0,7	FFP1 ≤ 0,60	2,1	FFP1 $\leq 2,10$ FFP2 $\leq 2,40$ FFP3 $\leq 3,00$	The results are valid for third protection class, FFP3.
7	Simulated	0,5		2,1		
8	wearing	0,6		2.4		
9	treatment	0.7	EEDA . O FO	2.5		
23	Т	0,8	FFP2 ≤ 0,70	2,4		
24	Temperature conditioned	0,7	FFP3 ≤ 1.0	2,7		
25		0.6	1113 \(\) 1,0	2.2		Passed
13		0,8		2,5		V 10042505161.
14	Flow	0,8		2,7	-	
15	conditioned	0.7		2.5	-	

Exhalation Resistance

No. of Sample	Condition	Facing directly	Facing vertically upwards	Facing vertically downwards	Lying on the left side	Lying on the right side	Requirements in accordance with EN	Assessment of Test Result Conformity /
		Flow Rate 160 L/min						149:2001 +A1:2009
42		2,2	2,4	2,5	2,7	2,1		
43	As received	2,2	2,5	2,7	2,4	2,3		
44		2,2	2,6	2,4	2,4	2,5		
7	Cimulated	2,3	2,5	2,7	2,4	2,5		The results are valid for third protection class, FFP3.
8	Simulated wearing treatment	2,2	2,4	2,6	2,7	2,8	FFP1 ≤ 3.0	
9	treatment.	2,1	2,4	2,6	2,8	2,7	FFP2 ≤ 3,0	
23	TT CONTROL OF THE CON	2,2	2,3	2,5	2,6	2,6		
24	Temperature conditioned	2,3	2,4	2,4	2,1	2,7	FFP3 ≤ 3,0	1113.
25		2,4	2,4	2,5	2,4	2,6	FFF3 ≤ 3,0	Passed
13		2,3	2,4	2,5	2,5	2,6		
14	Flow conditioned	2,4	2,3	2,4	2,2	2,7		
15		2,3	2,4	2,4	2,4	2,7		

lab A

7.17 CLOGGING (EN 149:2001 + A1:2009 clause 8.9, 8.10)

Test Method: Described in Clause 8.8, 8.10

REQUIREMENT	RESULTS	COMMENT
Valved particle filtering half masks: After clogging the inhalation resistances shall not exceed: FFP1:4mbar, FFP2:5mbar, FFP3:7mbar at 95L/min continuous flow. The exhalation resistance shall not exceed 3mbar at 160L/min continuous flow. Valveless particle filtering half masks: After clogging the inhalation resistances shall not exceed: FFP1:3mbar, FFP2:4mbar, FFP3:5mbar at 95L/min continuous flow	NAs	This is optional test and not desired by client.

Lab -

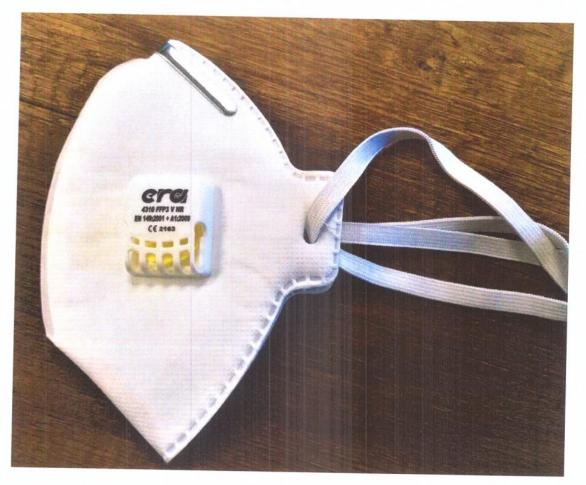
7.18 DEMOUNTABLE PARTS (EN 149:2001 + A1:2009 clause 8.2)

Test Method: Described in Clause 8.2

REQUIREMENT	RESULTS	COMMENT
All demountable parts (if fitted) shall be readily connected and secured, where possible by hand	N/A	No demountable part.

Lab -

Pass	Requirement satisfied.			
NCR	Requirement not satisfied. Refer to the "Result details" section for more information.			
NAs	Assessment not carried out.			
N/A	Requirement not applicable.			


LABORATORY INFORMATION

Code	Laboratory Name	Competency Explanations
Lab A	UNIVERSAL SERTIFIKASYON VE GOZETIM HIZMETLERI TIC. LTD. STI.	Internal Laboratory Services of Notified Body
Lab B	GCNTR ULUSLARARASI BELGELENDIRME, GOZETIM, EGITIM VE DIS TICARET LIMITED SIRKETI KOCAELI DILOVA SUBESI	Laboratory holds an accreditation by Turkish Accreditation Agency with number AB-1252-T according to EN ISO/IEC 17025:2017.
•	the laboratories is also under supervision / ass	INIVERSAL CERTIFICATION and the technical competence of sessment of UNIVERSAL CERTIFICATION based on the nts for bodies certifying products, processes and services standard. In with the issuing laboratory code.

Sample Photo

- End of Report -

